PHARMACOLOGY OF CENTRAL NERVOUS SYSTEM

CENTRAL NERVOUS SYSTEM

- Drugs can produce diverse pharmacological & psychological effects such as:
- Induction of Anesthesia
- Relief of Pain
- Prevention of Epileptic seizures
- Reduction of Anxiety
- Treatment of Depression
- TTT. of Alzheimer's disease & Parkinsonism
- CNS Drugs : Sedatives, Tranquilizers, Hypnotics, Anesthetics,

Anticonvulsants, Analgesics, Psychotropic agents, Behavioral

Structure of CNS

1- Brain

- 2- Spinal cord
- The Brain formed of 3 main parts:
- I. The Forebrain
 - Cerebrum
 - Thalamus
 - Hypothalamus
- II. The Midbrain
- III. The Hindbrain
- Cerebellum
- Pons
- Medulla oblongata

Transmission in CNS

- A nerve impulse (electric current) passé along axon to presynaptic membrane.
- Release neurotransmitter into synaptic cleft.
- NT interacts with receptors on effector cells to induce response.
- NT released in response to action potentials is voltage dependent & require calcium influx (Neuroregulators).
- Transmission in C.N.S. occurs in 2 ways:
- A- Release of Excitatory transmitter by Neuron
- (1) Cause depolarization of postsynaptic membrane of neuron
- (2) Cause Conduction of N impulse [postsynaptic excitation].
- B- Release of Inhibitory Transmitter by Neuron
- (!) Cause Hyper polarization of postsynaptic membrane .
- (2) Block conduction of nerve impulse [postsynaptic inhibition].

Neurohumoral Transmission in central nervous system

All drugs are act on CNS through –

Voltage gated receptor-

Ion channel-example – Na+, K+, Cl-, Cd++

Ligand gated receptor –

- They are also known as Inotropic receptor.
- Those which also bind to G-protein receptor
- They are called Metabotropic receptor.

Neurohumoral Transmission in central nervous system-

ACTION POTENTIAL

THE CHANGE IN ELECTRICAL POTENTIAL ASSOCIATED WITH THE PASSAGE OF AN IMPULSE ALONG THE MEMBRANE OF A

Action potential

Na* ions in

Repolarization

Threshold

Failed initiations

Resting state

Hyperpolarization

Time (ms)

· Resting Potential

 Sodium and potassium channels are closed. Na+ rush into the cell; K+ are concentrated inside the cell. Potential difference: -85 mV.

Depolarization

 Sodium channels open in response to a stimulus. Na+ rush into the cell according to the dictates of diffusion. Final potential difference +30 mV.

Repolarization

- Na+ channels close and K+ channels open. K+ rush out of the cell according to the dictates of diffusion. Potential difference: slightly below -85 mV.
- Hyperpolarization is a change in a cell's membrane potential that makes it more
 negative. It is the opposite of a depolarization. It inhibits action potentials by increasing
 the stimulus required to move the membrane potential to the action potential
 threshold.

Resting Conditions Re-established

 Na+ and K+ channels are closed. Sodium-potassium exchange pump moves Na+ out and K+ in. Resting potential difference: -85 mV.

Neurohumoral Transmission in central nervous system-

Neurotransmission:-

- Impulse is transmitted across a synapse between two neurons.
- Neurotransmitters (NT) are released in to synaptic cleft either by stimulation or inhibit the post synaptic neuron

Certain criteria in order to accept NT:

- Must be present in the neurons & presynaptic nerve endings should have a discrete rather than uniform pattern of distribution
- Must be released from presynaptic nerve terminal
- Enzymatic mechanisms capable of synthesizing and degraded the substance should be present with in the neuron
- Local concentration of the substance related to function of neuronal structure & fluctuations in its concentration
- Blocking agents should produce demonstrable effects by preventing the access of transmitter

Neurohumoral Transmission in central nervous system-

Neurotransmitters are chemical messengers that transmit signals from a neuron to a target cell across a synapse.

CLASSIFICATION OF CNS NEUROTRANSMITTERS

Amino acid

GABA, Glycine, Aspartate, Beta alanin, Cholinergi C Ach Adrenergi C dopamine, NA

Histaminic histamine

Triptaminergi c -5HT Neuropepti de – endorphines, braydykinins, somatostatin

https://www.slideshare.net/DekolluSuku/neurohumoral-transission-in-cns

https://www.slideshare.net/RAviKumarReddy31/neurohumoral-transmission-in-cns

hank Uou.